
02-10-2002, 02:28 AM
|
|
Registered User
|
Join Date: Dec 2001
Posts: 57
|
|
|
For constant acceleration
d = d0 + vt + .5at^2
v = v0 + at
v^2 = 2ad
Acceleration on a cylinder (space colony, etc.) of radius r and
rotation period t:
a = 4 pi**2 r / t^2
For circular Keplerian orbits where:
Vc = velocity of a circular orbit
Vesc = escape velocity
M = Total mass of orbiting and orbited bodies
G = Gravitational constant (defined below)
u = G * M (can be measured much more accurately than G or M)
K = -G * M / 2 / a
r = radius of orbit (measured from center of mass of system)
V = orbital velocity
P = orbital period
a = semimajor axis of orbit
Vc = sqrt(M * G / r)
Vesc = sqrt(2 * M * G / r) = sqrt(2) * Vc
V^2 = u/a
P = 2 pi/(Sqrt(u/a^3))
K = 1/2 V**2 - G * M / r (conservation of energy)
Anyone think they can use those? |
__________________
|
|
|
|